
Shift Left Performance
Automated Code inspection for Performance

©Appentra Solutions S.L.
April 2022

Codee Training Series
April 26-27, 2022

Shift Left Performance

First: Introduction to Codee - Shift Left Performance

2

#1 Introduction to Codee tools: Shift Left Performance

● Introduction to Codee and the shift left approach

● Open catalog of coding rules for performance optimization

● Automated code inspection with Codee: Discover and Adopt

● Quick start to Codee: Canny image processing

● Hands-on: Optimizing PI on Perlmutter

Format:

● Remote lectures (~30’), demos. and hands-on sessions

Shift Left Performance

Software Size and Complexity continues to grow Faster than Ever

3

The ability of the software to make time-sensitive decisions is key

Source: https://www.uswitch.com/guides/car-insurance/data-security-in-connected-cars/

How many lines of code are needed to run connected cars?

Facebook

Large Hadron Collider

F-35 Fighter Jet

Android OS

Firefox Browse

Boeing 787

Space Shuttle Flight Software

Pacemaker

Average iPhone App

Average Connected Car

62,000,000

50,000,000

24,700,000

15,000,000

9,900,000

6,500,000

400,000

80,000

40,000

150,000,000

https://www.uswitch.com/guides/car-insurance/data-security-in-connected-cars/

Shift Left Performance

Need for New Developer Tools to Shift Left Performance

4

The ability of software developers to write code that runs fast on modern hardware is key

Shift Left Performance

Market

Audio
encoding Compression Simulation Image

processing
Video

encoding Bio informatics Astro physics 5G networks Maths
kernels

Simulation
CFD

MP3 UNZIP
SPEC

CPU 2017 CANNY FFMPEG GROMACS HACCmk Linux
Kernel MATMUL NASA

NPB

Automotive

Telecommunications

MilAero
drone

Consumer electronics

High Performance
Computing (HPC)

Anyone Developing in C/C++ is a Candidate to Adopt Codee
Opportunities are extensive across many market verticals

5

https://www.appentra.com/wp-content/uploads/2021/10/GROMACS-Case-Study.pdf
https://www.appentra.com/wp-content/uploads/2021/07/HACCmk-success-story.pdf

Shift Left Performance

Automated Code Inspection
For Performance

Benefits

Deliver faster applications
for modern low-power hardware

Save costs in software development

Integrate a repeatable, scalable and robust solution
into the development workflow

Shift Left Performance

6

Shift Left Performance

Performance Optimization Roadmap using Codee

7

● Steps you need to take to get the maximum performance out of your C/C++ application.
● Optimization areas are ultimately the same on any type of processor, namely:

○ Memory traffic control
○ Vectorization
○ Multi-threading

● However, tuning your C/C++ code for a given type of
processor may require focus on specific areas.

● Codee assists the developer in writing
hardware-friendly C/C++ code that runs efficiently
on any type of processor.

● Codee supports the programming techniques
required at any step of the performance optimization
roadmap.

Step Programming techniques
specialized in performance

1 Sequential scalar optimization

2 Sequential control flow optimization

3 Sequential memory optimization

4 Vectorization

5 Multi-threading

6 Offloading

Shift Left Performance 8

https://www.codee.com/knowledge/

Open Catalog of Coding Rules for Performance

Recommendations (40)
PWR001: Declare global variables as function parameters
PWR002: Declare scalar variables in the smallest possible scope
PWR003: Explicitly declare pure functions
PWR004: Declare OpenMP scoping for all variables

Opportunities (3)
OPP001: Multi-threading opportunity
OPP002: SIMD opportunity
OPP003: Offloading opportunity

Defects (11)
PWD002: Unprotected multithreading reduction operation
PWD003: Missing array range in data copy to the GPU
PWD004: Out-of-memory-bounds array access
PWD005: Array range copied to or from the GPU does not cover
the used range

Remarks (14)
RMK001: Loop nesting that might benefit from hybrid
parallelization using multithreading and SIMD
RMK002: Loop nesting that might benefit from hybrid
parallelization using offloading and SIMD
RMK003: Potentially privatizable temporary variable

Glossary (22)
Locality of Reference
Loop fission
Loop interchange
Loop sectioning
Loop tiling
Loop unswitching
Loop-carried dependencies
Memory access pattern
Multithreading
Offloading

https://www.codee.com/knowledge/
https://www.codee.com/knowledge/pwr001
https://www.codee.com/knowledge/pwr002
https://www.codee.com/knowledge/pwr003
https://www.codee.com/knowledge/pwr004
https://www.codee.com/knowledge/opp001
https://www.codee.com/knowledge/opp002
https://www.codee.com/knowledge/opp003
https://www.codee.com/knowledge/pwd002
https://www.codee.com/knowledge/pwd003
https://www.codee.com/knowledge/pwd004
https://www.codee.com/knowledge/pwd005
https://www.codee.com/knowledge/pwd005
https://www.codee.com/knowledge/rmk001
https://www.codee.com/knowledge/rmk001
https://www.codee.com/knowledge/rmk002
https://www.codee.com/knowledge/rmk002
https://www.codee.com/knowledge/rmk003
https://www.codee.com/knowledge/glossary-locality-of-reference/
https://www.codee.com/knowledge/glossary-loop-fission/
https://www.codee.com/knowledge/glossary-loop-interchange/
https://www.codee.com/knowledge/glossary-loop-sectioning/
https://www.codee.com/knowledge/glossary-loop-tiling/
https://www.codee.com/knowledge/glossary-loop-unswitching/
https://www.codee.com/knowledge/glossary-loop-carried-dependencies/
https://www.codee.com/knowledge/glossary-memory-access-pattern/
https://www.codee.com/knowledge/glossary-multithreading/
https://www.codee.com/knowledge/glossary-offloading/

Shift Left Performance CONFIDENTIAL

Navigating the Open Catalog by Stage of the Roadmap

📄 PWR006: Avoid privatization of read-only
variables

📄 PWD001: Invalid OpenMP multithreading
datascoping

📄 PWD002: Unprotected multithreading
reduction operation

📄 PWD004: Out-of-memory-bounds array
access

📄 PWD007: Unprotected multithreading
recurrence

📄 PWD008: Unprotected multithreading
recurrence due to out-of-dimension-bounds
array access

📄 PWD009: Incorrect privatization in
OpenMP parallel region

📄 PWD010: Incorrect sharing in OpenMP
parallel region

📄 PWD011: Missing OpenMP last private
clause

📄 RMK003: Potential temporary variable for
the loop which might be privatizable, thus
enabling the loop parallelization

Sequential optimizations

9

SIMD/Vector execution Multi-threaded execution Offloading to accelerators

📄 PWR001: Declare global variables as
function parameters

📄 PWR002: Declare scalar variables in the
smallest possible scope

📄 PWR003: Explicitly declare pure
functions

📄 PWR004: Declare OpenMP scoping for
all variables

📄 PWR007: Disable implicit declaration of
variables

📄 PWR008: Declare the intent for each
procedure parameter

📄 PWR010: Avoid column-major array
access in C/C++

📄 PWR012: Pass only required fields from
derived data types as parameters

📄 RMK004: Avoid strided array access
to improve performance

📄 RMK005: Avoid non-consecutive
array access to improve performance

📄 RMK006: Avoid indirect array access
to improve performance

📄 PWR017: Transform while into for loop in
order to allow vectorization

📄 PWR018: Call to recursive function within a
loop may inhibit vectorization

📄 PWR019: Consider interchanging loops to
favor vectorization by maximizing inner loop’s
trip count

📄 PWR020: Consider loop fission to enable
vectorization

📄 PWR021: Temporary computation can be
extracted to a vectorizable loop

📄 PWR022: Move invariant conditional out of
the loop to facilitate vectorization

📄 PWR023: Add ‘restrict’ for pointer function
parameters to hint the compiler that
vectorization is safe

📄 PWR009: Use OpenMP teams to offload work
to GPU

📄 PWR013: Avoid copying unused variables to
the GPU

📄 PWR015: Avoid copying unnecessary array
elements to or from the GPU

📄 PWR024: Loop can be rewritten in OpenMP
canonical form

📄 PWR025: Consider annotating pure function
with OpenMP ‘declare simd’

📄 PWR026: Annotate function for OpenMP
offload

📄 PWR027: Annotate function for OpenACC
offload

📄 PWD003: Missing array range in data copy
to the GPU

📄 PWD005: Array range copied to or from
the GPU does not cover the used range

📄 PWD006: Missing deep copy of
non-contiguous data to the GPU

https://www.codee.com/knowledge/

https://www.codee.com/knowledge/

Shift Left Performance

Performance Optimization
Platform

Opportunities (OPP)
Sequential, vectorization, multi-threading and GPU offloading

Recommendations (PWR)
Boost performance and ensure best practices

Defects (PWD)
Find and fix bugs in parallel code and correctness verification

Remarks (RMK)
Proficient usage of tools

examples/matmul$ pwreport src/main.c:15 --level 2 -- -I src/include
Compiler flags: -I src/include

ACTIONS REPORT

 FUNCTION BEGIN at src/main.c:matmul:6:1
 6: void matmul(size_t m, size_t n, size_t p, double **A, double **B, double **C) {

 LOOP BEGIN at src/main.c:matmul:15:5
 15: for (size_t i = 0; i < m; i++) {

 [PWR010] src/main.c:15:5 'B' multi-dimensional array not accessed in row-major order
 [RMK005] src/main.c:18:28 avoid non-consecutive array access for variable 'A' to improve performance
 [RMK005] src/main.c:18:38 avoid non-consecutive array access for variable 'B' to improve performance
 [RMK005] src/main.c:18:25 avoid non-consecutive array access for variable 'C' to improve performance
 [RMK005] src/main.c:18:25 avoid non-consecutive array access for variable 'C' to improve performance

 [OPP001] src/main.c:15:5 is a multi-threading opportunity
 [OPP003] src/main.c:15:5 is a offload opportunity
 LOOP END
 FUNCTION END

 FUNCTION BEGIN at src/main.c:main:24:1
 24: int main(int argc, char *argv[]) {

 FUNCTION END

Full workflow support: CI/CD, repository, IDE and issue trackers

Compliance with performance optimization best practices
(memory usage, vectorization, multi-threading, offload)

Report human-readable actionable recommendations
on where and how to fix performance issues

Automated fixes to actually implement code changes

Scan source code without executing that code

Optimize performance for microprocessors
(x86, Arm, Power) and accelerators (GPU)

Customization and extension of built-in rule set

10

Shift Left Performance

First, produce the Codee Performance Optimization Report

11

$ pwreport --evaluation canny.c --include-tags all

Target Lines of code Analyzed lines Analysis time # actions Effort Cost Profiling
------- ------------- -------------- ------------- --------- ------ -------- ---------
canny.c 656 252 623 ms 114 579 h 18947€ n/a

ACTIONS PER OPTIMIZATION TYPE
Target Serial scalar Serial control Serial memory Vectorization Multithreading Offloading
------- ------------- -------------- ------------- ------------- -------------- ----------
canny.c 17 49 8 15 22 3

Target : analyzed directory or source code file
Lines of code : total lines of code found in the target (computed the same way as the sloccount tool)
Analyzed lines : relevant lines of code successfully analyzed
Analysis time : time required to analyze the target
actions : total actionable items (opportunities, recommendations, defects and remarks) detected
Effort : estimated number of hours it would take to carry out all actions (serial scalar, serial control, serial memory, vectorization,
multithreading and offloading with 1, 2, 4, 8, 12 and 16 hours respectively)
Cost : estimated cost in euros to carry out all the actions, paying the average salary of 56,286€/year for a professional C/C++ developer
working 1720 hours per year
Profiling : estimation of overall execution time required by this target

SUGGESTIONS
 You can specify multiple inputs which will be displayed as multiple rows (ie. targets) in the table, eg:
 pwreport --evaluation some/other/dir canny.c --include-tags all

 Use --actions to find out details about the detected actions:
 pwreport --actions canny.c --include-tags all

 You can focus on a specific optimization type by filtering by its tag (serial-scalar, serial-control, serial-memory, vectorization,
multithreading, offloading), eg.:
 pwreport --actions --include-tags serial-scalar canny.c

1 file successfully analyzed and 0 failures in 123 ms

Shift Left Performance

Second, produce the Codee Actions Report

12

$ pwreport --actions --level 2 canny.c:gaussian_smooth --include-tags all

ACTIONS REPORT
 ...
 [RMK010] canny.c:496:10 the vectorization cost model states the loop is not a SIMD opportunity due to strided memory
accesses in the loop body

 More information on: https://www.appentra.com/knowledge/rmk010
 ...

 [OPP001] canny.c:492:4 is a multi-threading opportunity
 Compute patterns:
 - 'forall' over the variable 'smoothedim'

 SUGGESTION: use pwloops to get more details or pwdirectives to generate directives to parallelize it:
 pwloops canny.c:gaussian_smooth:492:4
 pwdirectives --omp multi canny.c:gaussian_smooth:492:4 --in-place

 More information on: https://www.appentra.com/knowledge/opportunities
 ...

$ pwdirectives --omp multi canny.c:gaussian_smooth:492:4 --out-file canny_optimized.c
Successfully parallelized loop at 'canny.c:gaussian_smooth:492:4' [using multi-threading]:
...

$ cc canny.c -fopenmp -O3 -lm -o canny
$./canny testvecs/input/15360_8640.pgm 0.5 0.7 0.9
Total time: 14.594

$ cc canny_optimized.c -fopenmp -O3 -lm -o canny
$./canny testvecs/input/15360_8640.pgm 0.5 0.7 0.9
Total time: 8.488

Shift Left Performance 13

Blog post “A touch of parallelism: example of NPB CG Benchmark”:
https://www.codee.com/touch-of-parallelism-example-of-npb-cg-benchmark/

The loop cg.c:conj_grad:458:5 runs 3 times faster that the original version on an AMD Ryzen 7 4800H laptop with 8
cores and 16 hardware threads, 16 GB of memory, Linux Ubuntu 20.04 operating system and CLANG 10 compiler.

● The primary goal is to show
performance gain on the
target application code

● Target hardware platform
equipped with:
○ x86/Arm processor
○ Clang/GCC compiler
○ Linux OS

And Measure the Performance Improvement enabled by Codee

https://www.codee.com/touch-of-parallelism-example-of-npb-cg-benchmark/

Shift Left Performance 14

Codee’s
programming techniques

 specialized in performance

Micro
processors

Micro
controllers

Other
devices Performance gains

following Codee’s
best practices

Sequential Scalar optimization X X X HACCmk runs 70% faster (from 37s down to 11s)

Sequential Control flow optimization X X X HotSpot3D runs 26% faster (from 2.7s down to 2s)

Sequential Memory optimizations X X X Canny runs 63% faster (from 9s down to 4.5s)

Vectorization SIMD X X Hotspot runs 17% faster (from 4s down to 3.3s)

Multithreading multicore CPU X X HACCmk runs 92% faster (from 92s down to 6.5s)
NPB CG runs 63% faster (from 141ms down to 52ms)

Offloading GPU X MATMUL runs 96% faster (from 57s down to 2.4s)

Improvement in Performance enabled by Codee

Shift Left Performance

Typical Use Cases for C/C++ Developers: Profile guided!

pwdirectives

src

hotspots

performance
report

Directives code
(OpenMP, OpenACC, GCC, Clang)

Profiling tool
(e.g. GNU gprof)

pwreport

pwreport
pwloops

Repeat until the target
performance is achieved
(% runtime reduction,
speedup)

15

Shift Left Performance

pwdirectives

src

hotspots

performance
report

Directives code
(OpenMP, OpenACC, GCC, Clang)

Profiling tool
(e.g. GNU gprof)

pwreport

pwreport
pwloops#2

#3

#1

Repeat until the target
performance is achieved
(% runtime reduction,
speedup)

#4

Typical Use Cases for C/C++ Developers: Profile guided!

#6
Get the performance optimization report for
the whole code base

#1

Create performance-optimized code for the
hotspot automatically

#2

Unlock new performance optimization
opportunities in the code#3

Integration with compilers
#4

Integration with build systems
#5

Benchmark Codee performance impact on
your hardware platform#6

#5

16

codee_com

company/codee-com/

www.codee.com

info@codee.com

Subscribe: codee.com/newsletter/

USA - Spain

https://twitter.com/codee_com
https://www.linkedin.com/company/codee-com
https://twitter.com/codee_com
https://www.linkedin.com/company/codee-com
http://www.codee.com
mailto:info@appentra.com
https://www.appentra.com/blog/newsletter/

